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Transport noise

Consider the following stochastic equation on torus Td := Rd/Zd (d ≥ 2),

du = λudt+ ν∆udt+ ◦dWt · ∇u; u(·, 0) = u0(·), (SHE)

where λ, ν ≥ 0, ◦d means the Stratonovich stochastic differential and W (x, t) is
a divergence-free space-time noise. We call this kind of noise as transport noise.

The physical backgrounds of transport noises in stochastic fluid dynamics:

Mechanics: (Mikulevicius and Rozovskii, 2004), (Holm, 2015) . . .

Separation of scales: (Flandoli and Pappalettera, 2021), (Flandoli and
Pappalettera, 2022), (Debussche and Pappalettera, 2023) . . .
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Transport noise

Consider the following stochastic equation on torus Td := Rd/Zd (d ≥ 2),

du = λudt+ ν∆udt+ ◦dWt · ∇u. (SHE)

The physical backgrounds of transport noises in stochastic fluid dynamics:

Mechanics: (Mikulevicius and Rozovskii, 2004), (Holm, 2015) . . .

Separation of scales: (Flandoli and Pappalettera, 2021), (Flandoli and
Pappalettera, 2022), (Debussche and Pappalettera, 2023) . . .

This talk will specifically focus on the effects of transport noise on

inviscid mixing (λ = 0, ν = 0),

stabilization (λ ≥ 0, ν > 0).
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The form of noise

Consider transport noise as follows,

W (x, t) :=
√
Cdκ

∑
k∈Zd

0

d−1∑
i=1

θkσk,i(x)W
k,i
t , (Noise)

where Cd = d/(d− 1), noise intensity κ > 0, coefficient θ := {θk}k ∈ ℓ2(Zd
0) is

symmetric, {σk,i}k∈Zd
0 ,i=1,...,d−1 are divergence-free fields:

σk,i(x) := a⃗k,i exp{2πi k · x}, k · a⃗k,i = 0,

and {W k,i}k,i are standard complex Brownian motions:

W k,i
t = W−k,i

t ,
[
W k,i,W l,j

]
t
= 2tδk,−lδi,j .

Specific case: Kraichnan noise,

θk =
cα

|k|(d+α)/2
, ∀ k ∈ Zd

0; cα =
(∑

k

1

|k|(d+α)

)1/2

,

where α > 0. Kraichnan noise is important in studying turbulence.
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The form of noise

Under the above assumptions, (SHE) has the following Itô form

du = λudt+ (κ+ ν)∆udt+
√

Cdκ
∑
k∈Zd

0

d−1∑
i=1

θk
(
a⃗k,i · ∇u

)
ek(x) dW

k,i
t .

The operator κ∆ is a "fake" dissipation term, since it is nullified by the
martingale component in energy computations.
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Transport equation

Consider the transport equation on torus Td,

d

dt
u = b(x, t) · ∇u; u(·, 0) = u0(·), (TE)

where u0 is mean zero and b : Td × [0,+∞) → Rd is a divergence-free
vector field. There is a corresponding Lagrangian flow φs,t : Td → Td as

d

dt
φs,t(x) = b(φs,t(x), t); φs,s = Id. (Flow)
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Definition of mixing

In hydrodynamic systems, vector field b(x, t) is said exponential mixing,
if there exists β > 0 and cβ, Cβ > 0 such that

∥u(t)∥H−β ≤ Cβ e
−cβ t∥u0∥Hβ , ∀u0 ∈ Hβ(Td).

It is equivalent to the Lagrangian flow φs,t satisfies

|⟨f ◦ φs,t, g⟩| ≤ Cβ e
−cβ (t−s)∥f∥Hβ∥g∥Hβ , ∀f, g ∈ Hβ(Td),

which means the strong mixing we usually use.

Remark: The inviscid mixing roughly means that the frequency of fluid
towards higher.
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Fields

There are a lot of works on exponential mixing. We only list some of them,

Deterministic fields: (Iyer, Kiselev, and Xu, 2014), (Yao and Zlatoš, 2017),
(Alberti, Crippa, and Mazzucato, 2019), (Elgindi and Zlatoš, 2019) . . .

Random fields: (Bedrossian, Blumenthal, and Punshon-Smith, 2022),
(Pappalettera, 2022), (Cooperman, 2023) . . .

Stochastic fields: (Gess and Yaroslavtsev, 2021), (Coti Zelati, Drivas, and
Gvalani, 2024), (Luo, Tang, and Zhao, 2024) . . .

(Alberti, Crippa, and Mazzucato, 2019) shows that the regularity (in space) of
vector field b(x, t) is closely related to the exponential mixing.
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Random fields: (Bedrossian, Blumenthal, and Punshon-Smith, 2022),
(Pappalettera, 2022), (Cooperman, 2023) . . .

Stochastic fields: (Gess and Yaroslavtsev, 2021), (Coti Zelati, Drivas, and
Gvalani, 2024), (Luo, Tang, and Zhao, 2024) . . .

(Bedrossian, Blumenthal, and Punshon-Smith, 2022): b(x, t) is a solution of
the Stochastic Navier-Stokes equation driven by an additive noise.

(Pappalettera, 2022): b(x, t) is an Ornstein-Uhlenbeck velocity field.

(Cooperman, 2023): b(x, t) is a random shear flow.
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Fields

There are a lot of works on exponential mixing. We only list some of them,

Deterministic fields: (Iyer, Kiselev, and Xu, 2014), (Yao and Zlatoš, 2017),
(Alberti, Crippa, and Mazzucato, 2019), (Elgindi and Zlatoš, 2019) . . .

Random fields: (Bedrossian, Blumenthal, and Punshon-Smith, 2022),
(Pappalettera, 2022), (Cooperman, 2023) . . .

Stochastic fields: (Gess and Yaroslavtsev, 2021), (Coti Zelati, Drivas, and
Gvalani, 2024), (Luo, Tang, and Zhao, 2024) . . .

When b(x, t) is a stochastic field, then (TE) rewrites as

du = ◦dWt · ∇u; u(·, 0) = u0(·). (STE)
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Our work: Mixing by transport noise

Consider the (SHE) with λ = 0 and ν = 0:

du = κ∆udt+
√
Cdκ

∑
k∈Zd

0

d−1∑
i=1

θk
(
a⃗k,i · ∇u

)
ek(x) dW

k,i
t . (STE-1)

Theorem 2.1 (Luo, T., Zhao, 2024+; arXiv:2402.07484)

If initial data u0 ∈ L2(Td) and noise coefficients {θk}k ∈ ℓ2(Zd
0), then the

solution u of Eq. (STE-1) is exponential mixing.
(i) ∀β > 0, there exists a constant Cβ,d > 0 such that

E∥u(t)∥2H−β ≤ Cβ,d e
−κC(θ,d) t/4∥u0∥2L2 ,

where C(θ, d) ≃d ∥θ∥2h−1 :=
∑

k |k|−2θ2k.

(ii) If ∥θ∥2h1 :=
∑

k |k|2θ2k < +∞, then for any 0 < λ0/κ < D(θ, d) ≃d ∥θ∥2h−1

and q ∈
(
0, D(θ,d)κ

λ0
− 1

)
, there is Cκ,θ,d(ω) with finite q–moment such that

P-a.s., ∥u(t)∥2H−1 ≤ Cκ,θ,d(ω) e
−λ0t ∥u0∥2L2 , ∀t ≥ 0.
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Comparsion with previous works

Consider the following equation on mainfold M1

du = κ
∑
n

⟨σk(x),∇u⟩TM ◦ dW k,i
t . (STE-2)

Theorem 2.2 (Gess and Yaroslavtsev, 2021; arXiv:2104.03949.)
Let {σk(x)}k satify the Hörmander condition, elliptic conditions and some
regularity conditions. Let the initial data u0 ∈ Hβ(M) ∩H1(M), β > 0.
Then the solution u to (STE-2) is exponential mixing:

P-a.s., ∥u(t)∥H−β ≤ C(ω) e−λ0t ∥u0∥Hβ , ∀t ≥ 0.

This result is coming from the exponential ergodicity of the two-point
Lagrangian flow (φt(x), φt(y)) on off-diagonal set Dc and the fact

E|⟨f ◦ φt, g⟩|2 =
∫
M×M

Pt

(
f × f

)
(x, y) g(x)g(y)µ(dx)µ(dy).

1M is a d-dimensional C∞-smooth compact Riemannian-mainfold.
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Comparsion with previous works

The divergence-free fields {σk(x)} specifically need satisfy
Hörmander condition: Lie(σ1, . . . , σK)(x) = TxM.
Elliptic condition for (σk(·), σk(·))k on Dc:∑

k

∣∣⟨σk(x1), v1⟩x1 + ⟨σk(x2), v2⟩x2

∣∣2 ≥ C
(
|v1|2 + |v2|2

)
,

where vi ∈ TxiM for i = 1, 2.
Elliptic condition for the normalized tangent flow: . . .
Regularity conditions: there exists α ∈ (0, 1] such that

(x, y) 7→
∑
k

Dσk(x)⊗Dσk(y), (x, y) 7→
∑
k

D2σk(x)⊗ σk(y)

are α-Hölder continuous, and . . .
Note: If M = Td, the above conditions are more difficult to verify and

stronger than those in our work.
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Comparsion with previous works

Consider the following equation on Rd,

du = ∇u ◦ dWt. (STE-3)

W (x, t) is a specific Kraichnan noise on Rd, where

EW (x, t) = 0, E[W (x, t),W (y, s)] = D(x− y) (t ∧ s),

with the isotropic covariance matrix D,

D(0)−D(r) = D1

[
Id +

( 2

d− 1

)
(Id− r ⊗ r)

]
|r|2.

Let Iβ(r) := 1
rd−2β . Due to ∥h∥2

H−β = ⟨h, Iβ ∗ h⟩L2 and(
D(0)−D(r)

)
: ∇r ⊗∇rIβ = −λd,βIβ,

Itô formula gives the exponential mixing in the average.
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Comparsion with previous works

Consider the following equation on Rd,

du = ∇u ◦ dWt. (STE-3)

W (x, t) is a specific Kraichnan noise on Rd, where

EW (x, t) = 0, E[W (x, t),W (y, s)] = D(x− y) (t ∧ s),

with the isotropic covariance matrix D,

D(0)−D(r) = D1

[
Id +

( 2

d− 1

)
(Id− r ⊗ r)

]
|r|2.

Theorem 2.3 (Coti Zelati, Drivas, and Gvalani, 2024; J. Stat. Phys.)
Fix β ∈ [0, d/2), the solution u to Eq. (STE-3) satisfies

E∥u(t)∥2H−β ≤ e−λd,β∥u0∥2H−β , t ≥ 0,

where λd,β = 2D1β(d− 2β).
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Comparsion with previous works – Summary from results

du =
∑
k

σk(x) · ∇u ◦ dW k
t . (abstract-STE)

Literature & Result Space Initial data Noise

A: Mixing in P-a.s. M Hβ(M) ∩H1(M) Hörmander conditions and
some regularity conditions

B: Mixing in average Rd Not specified1 Kraichnan noise
C: Mixing in average Td L2(Td) {θk}k ∈ ℓ2(Zd

0)

C: Mixing in P-a.s. Td L2(Td) {θk}k ∈ h1(Zd
0)

A : (Gess and Yaroslavtsev, 2021)

B : (Coti Zelati, Drivas, and Gvalani, 2024)

C : Our results (Luo, Tang, and Zhao, 2024)

1At least ensuring the well-posedness and belonging to H−β(Rd).
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Comparsion with previous works – Summary from methods

du =
∑
k

σk(x) · ∇u ◦ dW k
t . (abstract-STE)

A (Gess and Yaroslavtsev, 2021): Studying the two-point Lagrangian
flow (φt(x), φt(y)) and proving its exponential ergodicity.

B (Coti Zelati, Drivas, and Gvalani, 2024): Using the identity about this
special Kraichnan noise. It doesn’t work for torus and other noises.

Using the symmetry of noise coefficient θ := {θ}k and the particular
spectrum of ∆ on Td, we find an elementary and direct approach to the
exponential mixing.
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Sketch of the Proof of mixing

For simplicity, we consider d = 2. Eq. (STE-1) rewrites as

du = κ∆udt+
√
2κ

∑
k∈Z2

0

θk

(k⊥
|k|

· ∇u
)
ek(x) dW

k
t , u(0, ·) ∈ L2(T2).

Then E|ûk|2 satisfies the infinite dimensional ODE:

d

dt
E|ûk|2 = −8π2κ|k|2E|ûk|2 + 16π2κ

∑
l∈Z2

0

θ2l
|k · l⊥|2

|l|2
E|ûk−l|2

= 16π2κ
∑
l∈Z2

0

θ2l
|k · l⊥|2

|l|2
(
E|ûk−l|2 − E|ûk|2

)
. (ODE)

To prove exponential mixing, we only need to show that the ℓp norm of
Yk := E|ûk|2 decays exponentially for some p ∈ (1,+∞). By symmetry,

d

dt

∑
k

Y p
k = −8π2κ p

∑
k,l∈Z2

0

θ2l
|k · l⊥|2

|l|2
(
Yk+l − Yk

)(
Y p−1
k+l − Y p−1

k

)
.
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Sketch of the Proof of mixing – Continue

To prove the exponential decay rate of
∑

k Y
p
k (t), we need∑

k

Y p
k ≤ c

∑
k,l

θ2l
|k · l⊥|2

|l|2
(
Yk+l − Yk

)(
Y p−1
k+l − Y p−1

k

)
for some c > 0. We have the following inequality in one dimension∑

n∈N
apn ≤ 2p2

p− 1

∑
n∈N

(n+ 1)2(ap−1
n+1 − ap−1

n )(an+1 − an).

Let Γ(k0, n) = k0 +
⌊
n+1
2

⌋
l +

⌊
n
2

⌋
l⊥ with k0 · l⊥ > 0. Noticing

|Γ(k0, n) · l⊥|2

|l|2
=

∣∣∣k0 · l⊥|l|
+

⌊n
2

⌋∣∣∣2 ≈ (n+ 1)2

4
,

we can decompose Z2
0 into countable orbits as the above form and apply

the inequality to obtain the exponential decay of
∑

k Y
p
k (t).
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Sketch of the Proof of mixing – Continue

We give a diagram of this decomposition,

Figure: The decomposition of Q1 for l = (2, 1)
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Sketch of the Proof of mixing – Continue

Combining the above estimates, we obtain

∥Y (t)∥ℓp ≤ e
−κπ2 1

p
(1− 1

p
)∥θ∥2

h−1 t∥Y (0)∥ℓp , ∀ t > 0,

where Y (t) := {Yk(t)}k. By Hölder inequality, for β > 1/2,

E∥u(t)∥2H−β = E
∑
k

|ûk(t)|2

|2πk|2β
≤

(∑
k

1

|2πk|4β
)1/2(∑

k

(
E|ûk(t)|2

)2)1/2

≤ Ce−
κπ2

4
∥θ∥2

h−1 t∥Y (0)∥4ℓ2≤ Ce−
κπ2

4
∥θ∥2

h−1 t∥u0∥2L2 .

Similarly, the exponential mixing in average also holds for 0 < β ≤ 1/2.
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Sketch of the Proof of mixing – Continue

To obtain the exponential mixing in P-a.s. from mixing in average, we
need the Borel–Cantelli lemma and the following boundness lemma.

Lemma 2.4 (Luo, T., Zhao, 2024+; arXiv:2402.07484)

If initial data u0 ∈ L2(Td) and noise coefficient θ satisfies ∥θ∥2h1 < +∞,
then the solution u to the stochastic transport equation (STE-1) satisfies

E
[

sup
t∈[0,t0]

∥u(t)∥2H−1

]
≤ 2∥u0∥2H−1 ,

where t0 =
(√

11−3
16

)2 1
π2 d κ ∥θ∥2

h1
> 0.
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Application: Regularized 2D-Euler equation

We apply our results to the nonlinear equations, such as the regularized
stochastic 2D Euler equation with α > 0 on T2:dw + u · ∇w dt =

√
2κ

∑
k

θkσk · ∇w ◦ dW k
t ,

u = curl−1(−∆)−α/2w, w(0, ·) ∈ L2(T2),
(R-Euler)

where curl−1 is Biot–Savart operator.

Note: similar to the 2D Euler equation, the regularized equation

d

dt
w + u · ∇w = 0, u = curl−1(−∆)−α/2w,

has the following identity when w is smooth,

∥w(t)∥H−1−α = ∥w(0)∥H−1−α , ∀t ≥ 0.
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Application: Regularized 2D-Euler equation

We apply our results to the nonlinear equations, such as the regularized
stochastic 2D Euler equation with α > 0 on T2:

dw + u · ∇w dt =
√
2κ

∑
k

σk · ∇w

Kα|k|1+α
◦ dW k

t ,

u = curl−1(−∆)−α/2w, w(0, ·) ∈ L2(T2),

(R-Euler)

where curl−1 is Biot–Savart operator and Kα is a normalizing constant.

Let W̃ k
t := W k

t −
∫ t
0 Kα|k|1+α ⟨u(s), σk⟩√

2κ
ds, then by Girsanov theorem,

W̃ k
t is a Brownian motion under P̃. Then (R-Euler) rewrites

dw = κ∆w dt+
√
2κ

∑
k

σk · ∇w

Kα|k|1+α
dW̃ k

s .

Thus, w is exponential mixing in average with P̃.
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Application: Regularized 2D-Euler equation

We apply our results to the nonlinear equations, such as the regularized
stochastic 2D Euler equation with α > 0 on T2:

dw + u · ∇w dt =
√
2κ

∑
k

σk · ∇w

Kα|k|1+α
◦ dW k

t ,

u = curl−1(−∆)−α/2w, w(0, ·) ∈ L2(T2),

(R-Euler)

where curl−1 is Biot–Savart operator and Kα is a normalizing constant.

Theorem 2.5 (Luo, T., Zhao, 2024+; arXiv:2402.07484)

For fixed R > 0 and initial data w0(·) := w(0, ·) ∈ L2(T2). If ∥w0∥2L2 ≤ R,
then for any λ > 0, there exist a noise intensity κ(λ,R) such that

E∥w(t)∥2H−1−α ≤ C e−λt ∥w0∥2L2 , ∀ t ≥ 0.
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Backgrounds of stabilization by noise

The trivial solution Xt ≡ 0 of ODE

Ẋt = A0Xt, X0 ∈ Rd,

is unstable if matrix A0 ∈ Rd×d has positive eigenvalues.

(Arnold, Crauel, and Wihstutz, 1983) showed that suitable linear noise
induce asymptotic stability. If TrA0 < 0, then there exists skew-symmetric
matrices Ak such that the solution to

dXt = A0Xt dt+ κ

d−1∑
k=1

Ak Xt ◦ dW k
t

is P-a.s. exponentially decays with an exponential rate arbitrarily close to
1
d TrA0 < 0 for κ large enough.
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Backgrounds of stabilization by noise

Consider A0 =

(
1 0
0−2

)
and TrA0 = −1 < 0.

Ẋt = A0Xt dXt = A0Xt dt+ κ
∑d−1

k=1Ak Xt ◦ dW k
t
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Backgrounds of Stabilization by noise

Can this result be extended to the infinite dimension?

Let λ ≥ 0 and ν > 0. Recall Eq. (SHE) as

du = λudt+ ν∆udt+ ◦dWt · ∇u; u(·, 0) = u0(·).

Due to Tr(ν∆+ λ) = −∞, Capiński in the late 80s formualted the
conjecture that under suitable nosie, the solution of (SHE) exponentially
decays with an exponential rate arbitrarily close to −∞.
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Stabilization

Let λ ≥ 0 and ν > 0. Recall Eq. (SHE) as

du = λudt+ ν∆udt+ ◦dWt · ∇u; u(·, 0) = u0(·).

Theorem 3.1 (Luo, T., Zhao, 2024+; arXiv:2402.07484)

Given initial datum u0 ∈ L2(Td) and θ ∈ ℓ2(Zd
0), the solution u satisfies

E∥u(t)∥2L2 ≤ C0
8π2ν +D(θ, d)κ

2ν
e−(−2λ+8π2ν+D(θ,d)κ) t∥u0∥2L2 ,

where C0 ≥ 1
4π2 and D(θ, d) ≃d ∥θ∥2h−1 . There are noise parameters (κ, θ)

such that 2λ < 8π2ν +D(θ, d)κ, then E∥u(t)∥2L2 decays exponentially.

The similar result also holds in P-a.s. sense.
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From mixing to stabilization

We follow the idea of (Gess and Yaroslavtsev, 2021) to obtain the
stabilization from the exponential mixing. The key point is

d

dt

e2λt

E∥u(t)∥2
L2

=
2νe2λt(

E∥u(t)∥2
L2

)2 E∥u(t)∥2H1 ≥ 2νe2λt

E∥u(t)∥2
H−1

.

Using the exponential mixing:

E∥u(t)∥2H−1 ≤ C e−(−2λ+8π2ν+D(θ,d)κ) t∥u0∥2L2 ,

we obtain the stabilization for κ > 0 big enough.
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Thank you !
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